Search results for "Rotating machinery"
showing 7 items of 7 documents
Damping of rotor conical whirl by asymmetric dry friction suspension
2009
Abstract A new technique for the rotor whirl damping in rotating machinery, based on the elastic suspension of the journal boxes and the use of dry friction surfaces normal to the shaft axis between their supports and the frame, is here analysed theoretically for several cases of rotor systems characterized by mass and constraint asymmetry, where gyroscopic effects are to be expected and conical whirl motions may grow up. The critical flexural speeds can be easily cut off by an adhesive state of the supports and the whirl amplitude can be minimized as well throughout the remaining sliding range. Confining the operative angular speed of the rotor in the range of adhesive contact between the …
HEALTH MONITORING, FAULT DETECTION AND DIAGNOSIS IN INDUSTRIAL ROTATING MACHINERY BY ADVANCED VIBRATION ANALYSIS
On the beneficial effect of rotor suspension anisotropy on viscous-dry hysteretic instability
2012
The destabilizing influence of the internal friction on the supercritical rotor whirl can be efficiently counterbalanced by other external dissipative sources and/or anisotropic suspension systems. The theoretical approach may take the internal dissipation into consideration either by dry or viscous models. Nevertheless, several numerical results and a new perturbation technique of the averaging type prove that similar rotor motions and stability limits are achievable by both models, whence the linear viscous assumption appears preferable. Thus, the internal hysteretic force may be expressed by the product of an equivalent viscous coefficient and the rotor centre velocity relative to a refe…
Hysteretic whirl stabilization in rotor-shaft-bearing systems on dry friction suspension
2009
SUMMARY. The undesired whirl of rotating machines can be reduced by elastic journal box suspension systems equipped with dry friction dampers. The critical speeds can be cut off by the adhesion of the friction surfaces and the whirl amplitude can be restrained throughout the remaining sliding range by a proper choice of the suspension-to-shaft stiffness ratio and of the support-to-rotor mass ratio. The dry friction forces counteract also efficiently the well known destabilising effect of the shaft hysteresis in the supercritical range. This lecture deals firstly with the natural precession speeds, investigates the steady response to unbalance and defines the ranges of adhesive or sliding co…
A knowledge-based master-model approach with application to rotating machinery design
2011
Novel rotating machinery design concepts and architectures are being explored to reduce mass, energy consumption, manufacturing costs, and environmental impact while increasing performance. As component manufacturers supply parts to original equipment manufacturers, it is desirable to design the components using a systems approach so that they are optimized for system-level performance. To accomplish that, suppliers must be able to model and predict the behavior of the whole machinery. Traditional computer-aided design/computer-aided engineering master-modeling approaches enable manual changes to be propagated to linked models. Novel knowledge-based master-modeling approaches enable automa…
An Efficient Damping Technique for the Unstable Hysteretic Rotor Whirl by Proper Suspension Systems
2009
This paper shows as the destabilising influence of the shaft hysteresis on the supercritical rotor whirl can be efficiently counterbalanced by external dissipative sources. After calculating the steady whirling paths of the rotor and the bearing due to unbalance, the stability is checked by the Routh-Hurwitz procedure, investigating the influence of the stiffness anisotropy of the supports. A fairly interesting result is that the instability phenomena can be conveniently prevented by different suspension stiffness in the horizontal and vertical planes.
Control of hysteretic instability in rotating machinery by elastic suspension systems subject to dry and viscous friction
2010
Abstract Most of the undesired whirling motions of rotating machines can be efficiently reduced by supporting journal boxes elastically and controlling their movement by viscous dampers or by dry friction surfaces normal to the shaft axis, which rub against the frame. In the case of dry dampers, resonance ranges of the floating support configuration can be easily cut off by planning a motionless adhesive state of the friction surfaces. On the contrary, the dry friction contact must change automatically into sliding conditions when the fixed support resonances are to be feared. Moreover, the whirl amplitude can be restrained throughout the speed range by a proper choice of the suspension-to-…